

BIOTEChnologisches Zentrum

Relation Discovery between Indirectly Connected Biomedical Concepts

Dirk Weißenborn, Michael Schroeder, George Tsatsaronis DILS Conference, Lisbon, 2014

Raynaud's syndrome & fish oil

clinical study [DiGiacomo et al., 1989]

Motivation

- fast growth of knowledge sources → data mining
- combination of facts can lead to new knowledge (e.g., Swanson)
- focus of similar work mainly on word statistics neglecting linguistic information

Growth of UMLS

Structured vs. Unstructured Knowledge

Structured knowledge:

- from databases like the UMLS, DrugBank
- fixed set of concepts and relations

Unstructured knowledge:

- MEDLINE abstracts, annotated by MetaMap
- natural language text, expression of concepts and their relations in ambiguous and synonymous ways

Bridging the Gap

Concepts

 concept annotation of natural language text with *MetaMap*

Relations

- <u>problem</u>: reliable relation annotation *not possible* or *very restricted*
- <u>suggested solution</u>: use plain textual relation between annotated concepts → dependency paths

 $(aspirin, \stackrel{nsubjpass}{\rightarrow} use \stackrel{prep}{\leftarrow} in \stackrel{pobj}{\leftarrow} treatment \stackrel{prep}{\leftarrow} of \stackrel{pobj}{\leftarrow}, inflammation)$ $(aspirin, neg_{-} \stackrel{nsubjpass}{\rightarrow} use \stackrel{prep}{\leftarrow} in \stackrel{pobj}{\leftarrow} treatment \stackrel{prep}{\leftarrow} of \stackrel{pobj}{\leftarrow}, nasal polyps)$

Combining knowledge

Representing Relations

• simple model: **one-in-N** encoding

- feature vector of a relation is a vector with only one 1 in the respective dimension
- feature space is as large as there are relations
- some relations are semantically similar or even synonymous to each other
- simple model assumes all relations to be semantically dissimilar to each other
- need to encode relations semantically
- new model: *semantic* encoding
 - apply LDA to extract semantic vectors of much lower dimensionality for relations, ensuring semantically similar relations to have similar vectors
 - directly applicable by denoting a pair of concepts as a document with its relations (textual and structured) as words

Does LDA extract semantic vectors?

relation	most similar relations				
$\xrightarrow{dobj} form \xleftarrow{prep} with \xleftarrow{pobj}$					
has_target	$\xrightarrow{nsubjpass} degrade \xleftarrow{agent} by \xleftarrow{pobj}$				
	$\xrightarrow{nn} activity \xrightarrow{nsubjpass} inhibit \xleftarrow{agent} by \xleftarrow{pobj}$				
	$\xrightarrow{nsubj} inhibit \xleftarrow{dobj} phosphorylation \xleftarrow{prep} of \xleftarrow{pobj}$				
	$\xrightarrow{nsubj} show \xleftarrow{dobj} affinity \xleftarrow{prep} for \xleftarrow{pobj}$				
	$\xrightarrow{nsubjpass} show \xleftarrow{xcomp} interact \xleftarrow{prep} with \xleftarrow{pobj}$				
	$\xrightarrow{dep} form \xleftarrow{dobj}$				
	$\xrightarrow{nsubj} inhibit \xleftarrow{prep} in \xleftarrow{pobj} presence \xleftarrow{prep} of \xleftarrow{pobj}$				
	$\xrightarrow{nsubjpass} cross - linked \xleftarrow{prep} to \xleftarrow{pobj}$				
	$\xrightarrow{dep} form \xleftarrow{nsubjpass}$				
	$\xrightarrow{dobj} inhibit \xleftarrow{prep} with \xleftarrow{pobj}$				
	$\xrightarrow{nsubj} potentiate \xleftarrow{dobj} activity \xleftarrow{prep} of \xleftarrow{pobj}$				
	$\xrightarrow{nsubjpass} prepare \xleftarrow{agent} by \xleftarrow{pobj} reaction \xleftarrow{prep} of \xleftarrow{pobj}$				
	$\xrightarrow{nn} substrate \xleftarrow{prep} include \xleftarrow{pobj}$				
	$\xrightarrow{nsubj} act \xleftarrow{prep} by \xleftarrow{pobj}$				

Does LDA extract semantic vectors?

relation	most similar relations
	$\xrightarrow{pobj} with \xrightarrow{prep} patient \xrightarrow{nsubjpass} treat \xleftarrow{prep} with \xleftarrow{pobj}$
may_treat	$\xrightarrow{nsubj} be \xleftarrow{prep} in \xleftarrow{pobj} treatment \xleftarrow{prep} of \xleftarrow{pobj}$
	$\xrightarrow{nsubj} be \xleftarrow{attr} treatment \xleftarrow{prep} for \xleftarrow{pobj}$
	$\xrightarrow{nn} patient \xleftarrow{partmod} treat \xleftarrow{prep} with \xleftarrow{pobj}$
	$\xrightarrow{nsubjpass} use \xleftarrow{prep} in \xleftarrow{pobj} treatment \xleftarrow{prep} of \xleftarrow{pobj}$
	$\xrightarrow{nsubjpass} use \xleftarrow{prep} for \xleftarrow{pobj} treatment \xleftarrow{prep} of \xleftarrow{pobj}$
	$\xrightarrow{pobj} with \xrightarrow{prep} treat \xleftarrow{prep} for \xleftarrow{pobj}$
	$\xrightarrow{dobj} receive \xleftarrow{prep} for \xleftarrow{pobj}$
	$\xrightarrow{attr} be \xleftarrow{prep} in \xleftarrow{pobj} treatment \xleftarrow{prep} of \xleftarrow{pobj}$
	$\xrightarrow{pobj} with \xrightarrow{prep} patient \xleftarrow{rcmod} treat \xleftarrow{prep} with \xleftarrow{pobj}$
	$\xrightarrow{nsubjpass} administer \xleftarrow{prep}{to} to \xleftarrow{pobj}{patient} to \xleftarrow{prep}{tot} with \xleftarrow{pobj}{tot}$
	$\xrightarrow{nsubjpass} use \xleftarrow{prep} in \xleftarrow{pobj} patient \xleftarrow{prep} with \xleftarrow{pobj}$
	$\xrightarrow{dobj} use \xleftarrow{prep} in \xleftarrow{pobj} patient \xleftarrow{prep} with \xleftarrow{pobj}$
	$\xrightarrow{nsubj} improve \xleftarrow{prep} in \xleftarrow{pobj} patient \xleftarrow{prep} with \xleftarrow{pobj}$
	$\xrightarrow{nsubj} have \xleftarrow{prep} in \xleftarrow{pobj} patient \xleftarrow{prep} with \xleftarrow{pobj}$

Task

Find characteristic (path-)patterns for relations in the knowledge graph

$$R_l = \{(S1, T1), (S2, T2), (S3, T3)\}$$

Does this relation have a characteristic path pattern?

Paths found in knowledge graph

Experiments

- extraction of datasets
 - *may treat* (410 pairs from UMLS)
 - has target (740 pairs from DrugBank)
- construction of negative pairs for specific relation
- extraction of paths in knowledge graph for all pairs of the positive and negative examples
- training of logistic regression classifier with both one-in-N and LDA features
- evaluations focusing on high precision

diseases type distribution

Impact of lengths and feature types, has target

Impact of lengths and feature types, may treat

One-in-N vs. LDA features, has target

Direct vs. Direct + Indirect Connections, has target

Summary of Results

dataset	\mathbf{length}	AUC		accuracy (precision, recall)	
		plain	lda	plain	lda
may_treat	3-3	0.61	0.73	$\begin{array}{c} 0.63 \ (0.63, \ 0.61) \\ 0.62 \ (0.67, \ 0.49) \end{array}$	$0.69\ (0.76,\ 0.63)$
	3-4				
has_target	3-3	0.78	0.72	$0.75 \ (0.87, \ 0.59)$	$0.68\ (0.74,\ 0.60)$
	3-4	0.80	0.70	0.77 (0.84, 0.66)	$0.66\ (0.70,\ 0.58)$

Example Paths

highly weighted feature	explanation	
$\left(\xrightarrow{dep} induce \xleftarrow{prep} in \xleftarrow{pobj} \right), \left(\xrightarrow{pobj} in \xrightarrow{prep} express \xleftarrow{nsubjpass} \right)$	The substance is induced into something, in which the target (gene/protein) is expressed.	
$\left(\begin{array}{c} \xrightarrow{pobj} by \xrightarrow{agent} suppress \xleftarrow{nsubjpass} \\ \left(\xrightarrow{nsubj} increase \xleftarrow{prep} at \xleftarrow{pobj} \right) \end{array}\right),$	The drug suppresses something that is increased by the disease.	

Conclusions

- automatic discovery of relations using only indirect knowledge is possible
- using not only direct but also *indirect knowledge* to *discover relations* between concepts is *very useful*
- *semantic (LDA)* encoding *help*, when data is *sparse*

Thank you for your attention! Questions?

Statistics

Textual part of the graph after pruning

Concepts/Vertices: ~ 95,000 Avg. degree: ~ 410.5 Connected Pairs: ~ 9 million Most common concepts: cell, rat, mouse, disease, proteins, ...

Edges: ~ 39 million Textual relation labels: ~ 105,000 Avg. occurrence: ~ 371.27 Most frequently occurring textual relation labels: $hmod \rightarrow$ treat $amod \rightarrow$ $hmod \rightarrow$ induce $amod \rightarrow$ \leftarrow prep include \leftarrow pobj $nsubj \rightarrow$ be \leftarrow prep in \leftarrow pobj

Vertex Occurences

From Word- to Relation-Spaces

- numerous co-occurrence based algorithms computing semantic vectors for words co-occurring in a set of documents, e.g.,
 - latent semantic analysis (LSA)
 - reflective random indexing (RRI)
 - generalization of principle component analysis (gPCA)
 - latent dirichlet allocation (LDA)
- directly applicable by denoting a pair of concepts as a document with its relations (textual and structured) as words

Modeling

- How to represent a pair of concepts as a feature vector?
- concept pair = **multiset of paths** in the knowledge graph
- each path pattern (i.e., sequence of relations) between the source and target concept becomes a feature

Some problems with this approach

- text mining error at every stage:
 - concept annotation, e.g. the "IMPACT gene", Retinoic Acid Response Element abbreviated as "RARE", the "Household gene", etc.
 - POS tagging + dependency parsing more error prone on scientific text
- dependency paths neglect context of the assertions being made
- attributes of nouns or verbs neglected, e.g., *level* occurs in dependency path, but not the quality of the mentioned *level* (*high*, *low*, ...)
- no co-reference resolution \rightarrow missing knowledge

Classification scores of repositioned drug-disease pairs

General Modeling

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{u}\mathbf{v}^{\mathrm{T}} = \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \begin{bmatrix} v_{1} & v_{2} & v_{3} \end{bmatrix} = \begin{bmatrix} u_{1}v_{1} & u_{1}v_{2} & u_{1}v_{3} \\ u_{2}v_{1} & u_{2}v_{2} & u_{2}v_{3} \\ u_{3}v_{1} & u_{3}v_{2} & u_{3}v_{3} \\ u_{4}v_{1} & u_{4}v_{2} & u_{4}v_{3} \end{bmatrix}$$

LDA modeling relations between concepts

• pair of concepts = probability distribution of *N* real, but hidden relations (topics of I DA)

 $\alpha = 0.1$

LDA modeling relations between concepts

• given: 1 pair of concepts = distribution of hidden but real relations

