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Raynaud's syndrome & fish oll
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“..blood was studied in 20 patients
with Raynaud's syndrome...
studies demonstrate increased blood
viscosity ...”
[Tietjen et al., 1975]

“Beneficial effect of fish oil on Blood viscosity
blood viscosity in peripheral
vascular disease”

[ Woodcock et al., 1984 ]

Fish oil Raynaud's disease

Hypothesis:
Fish oil treats Raynaud’s syndrome
[Swanson, 1986]

Blood viscosity Blood viscosity

Confirmation:
clinical study [DiGiacomo et al., 1989]
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Motivation

Growth of UMLS
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Structured vs. Unstructured Knowledge

Structured knowledge: DrucBank
* from databases like the UMLS, DrugBank

* fixed set of concepts and relations

Unstructured knowledge:
* MEDLINE abstracts, annotated by MetaMap
* natural language text, expression of concepts and their relations

in ambiguous and synonymous ways
PublfQed
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Bridging the Gap
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(mild asthma | finding)
. ¥ .
with mild asthma inhaled steroids
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pharmaceutical preparations | pharmacologic substance

Concepts
* concept annotation of natural il sienerdsasesson
language text with MetaMap

For pat ::z-'wiss_':above

(are|[the most effective preventer

(most | quantitative concept)

Relations

* problem: reliable relation
annotation not possible or very
restricted

* suggested solution: use plain
textual relation between

annotated concepts —
dependency paths
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Textual Relations

use
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Combining knowledge

dependency paths
are edges connecting two concepts

paths
are paths in the graph connecting two
concepts via intermediate concepts
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Representing Relations -

simple model: one-in-N encoding

- feature vector of a relation is a vector with only one 1 in the respective dimension

- feature space is as large as there are relations

« some relations are semantically similar or even synonymous to each other

« simple model assumes all relations to be semantically dissimilar to each
other

* need to encode relations semantically
* new model: semantic encoding

- apply LDA to extract semantic vectors of much lower dimensionality for relations,
ensuring semantically similar relations to have similar vectors

— directly applicable by denoting a pair of concepts as a document with its relations
(textual and structured) as words



Does LDA extract semantic vectors?

relation | most similar relations
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Does LDA extract semantic vectors?

relation

most similar relations
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Task

Find characteristic (path-)patterns for relations in the knowledge graph

Does this relation have a y
characteristic path pattern? ' °

Paths found in knowledge graph

11
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EX p e rl m e n tS diseases type distribution

extraction of datasets
- may treat (410 pairs from UMLS) ——
- has target (740 pairs from DrugBank) .

construction of negative pairs for specific relation

extraction of paths in knowledge graph for all pairs

Immune System

of the positive and negative examples

Musculoskeletal

Male Urogenital

training of logistic regression classifier with both

Chemically-Induc

one-in-N and LDA features

evaluations focusing on high precision R
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Biotechnology Center TU Dresden

Impact of lengths and feature types, has target

true-positive rate
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Impact of lengths and feature types, may freat
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One-in-N vs. LDA features, has target

AUC
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Direct vs. Direct + Indirect Connections, has

target

true-positive rate
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Summary of Results
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dataset | length AUC accuracy (precision, recall)
plain | lda plain lda
may treat 3-3 0.61 | 0.73 ] 0.63 (0.63, 0.61) | 0.69 (0.76, 0.63)
yire 34 | 062 |0.75 | 0.62 (0.67, 0.49) | 0.70 (0.71, 0.69)
3-3 0.78 | 0.72 | 0.75 (0.87, 0.59) | 0.68 (0.74, 0.60)
has target | . |
3-4 0.80 | 0.70 | 0.77 (0.84, 0.66) | 0.66 (0.70, 0.58)
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Example Paths
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highly weighted feature explanation

dep rep nobj pobj . . .
( B induce £ in & ) ( 20 1 The  substance is  induced into
in T cxpress & jpass ) something, in which the target

( pobj

agent nsubjpass )

by “E5 suppress 22

nsubj . mep obj
( s increase & at & )

(gene/protein) is expressed.

The drug suppresses something that is
increased by the disease.
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Conclusions

« automatic discovery of relations using only indirect knowledge is
possible

e using not only direct but also indirect knowledge to discover
relations between concepts is very useful

« semantic (LDA) encoding help, when data is sparse

19



Thank you for your attention!
Questions?

20
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Statistics

Textual part of the graph after pruning

Vertex Occurences
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From Word- to Relation-Spaces
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* numerous co-occurrence based algorithms computing semantic
vectors for words co-occurring in a set of documents, e.g.,

latent semantic analysis (LSA)

reflective random indexing (RRI)

generalization of principle component analysis (gPCA)

latent dirichlet allocation (LDA)

« directly applicable by denoting a pair of concepts as a document with
its relations (textual and structured) as words

Cx-Cy
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£fC »)=|"
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Overview
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Modeling

 How to represent a pair of concepts as a feature vector?

» concept pair = multiset of paths in the knowledge graph

e each path pattern (i.e., sequence of relations) between the source and

target concept becomes a feature

()

-/

s,t
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Some problems with this approach

text mining error at every stage:

- concept annotation, e.g. the “IMPACT gene”, Retinoic Acid Response
Element abbreviated as “RARE”, the “Household gene”, etc.

- POS tagging + dependency parsing more error prone on scientific text

« dependency paths neglect context of the assertions being made

« attributes of nouns or verbs neglected, e.g., level occurs in
dependency path, but not the quality of the mentioned level (high,
low, ...)

* no co-reference resolution — missing knowledge

25
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isease pairs
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General Modeling
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Modeling
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Simple
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LDA modeling relations between concepts

» pair of concepts = probability distribution of N real, but hidden
relations (topics of | NA)
a=0.1
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LDA modeling relations between concepts

e given: 1 pair of concepts = distribution of hidden but real relations

qgmplp 1 hidden relation - relation X (x < N)

hmod — treat amod— (from Medline)
hmod — induce amod—  (from Medline)
may_prevent (from UMLS)

30
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