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Raynaud's syndrome & fish oil

“Beneficial effect of fish oil on 
blood viscosity in peripheral 

vascular disease” 
[Woodcock et al., 1984]

Blood viscosity “…blood was studied in 20 patients 
with Raynaud's syndrome… 

studies demonstrate increased blood 
viscosity …”

 [Tietjen et al., 1975]

Hypothesis: 
Fish oil treats Raynaud’s syndrome 

[Swanson, 1986]

Confirmation: 
clinical study [DiGiacomo et al., 1989]
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Motivation

● fast growth of knowledge sources → data 
mining

● combination of facts can lead to new 
knowledge (e.g., Swanson)

● focus of similar work mainly on word 
statistics neglecting linguistic information

Growth of UMLS

Growth of MEDLINE
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Structured vs. Unstructured Knowledge

Structured knowledge:
● from databases like the UMLS, DrugBank
● fixed set of concepts and relations

Unstructured knowledge:
● MEDLINE abstracts, annotated by MetaMap
● natural language text, expression of concepts and their relations 

in ambiguous and synonymous ways
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Bridging the Gap

Concepts
● concept annotation of natural 

language text with MetaMap

Relations
● problem: reliable relation 

annotation not possible or very 
restricted

● suggested solution: use plain 
textual relation between 
annotated concepts  →  
dependency paths
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Textual Relations
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Combining knowledge

dependency paths
are edges connecting two concepts

paths
are paths in the graph connecting two 
concepts via intermediate concepts
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Representing Relations

● simple model: one-in-N encoding

– feature vector of a relation is a vector with only one 1 in the respective dimension

– feature space is as large as there are relations

● some relations are semantically similar or even synonymous to each other

● simple model assumes all relations to be semantically dissimilar to each 
other

● need to encode relations semantically

● new model: semantic encoding

– apply LDA to extract semantic vectors of much lower dimensionality for relations, 
ensuring semantically similar relations to have similar vectors

– directly applicable by denoting a pair of concepts as a document with its relations 
(textual and structured) as words  
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Does LDA extract semantic vectors?
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Does LDA extract semantic vectors?
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Task
Find characteristic (path-)patterns for relations in the knowledge graph

Does this relation have  a 
characteristic path pattern?

Paths found in knowledge graph
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Experiments

● extraction of datasets

– may treat (410 pairs from UMLS)

– has target (740 pairs from DrugBank)

● construction of negative pairs for specific relation

● extraction of paths in knowledge graph for all pairs 
of the positive and negative examples

● training of logistic regression classifier with both 
one-in-N and LDA features

● evaluations focusing on high precision

diseases type distribution
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Impact of lengths and feature types, has target
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Impact of lengths and feature types, may treat
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One-in-N vs. LDA features, has target
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Direct vs. Direct + Indirect Connections, has 
target
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Summary of Results
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Example Paths
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Conclusions

● automatic discovery of relations using only indirect knowledge is 
possible 

● using not only direct but also indirect knowledge to discover 
relations between concepts is very useful

● semantic (LDA) encoding help, when data is sparse
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Thank you for your attention!
Questions?
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Statistics
Textual part of the graph after pruning
  

  Concepts/Vertices: ~ 95,000

  Avg. degree: ~ 410.5

  Connected Pairs: ~ 9 million

  Most common concepts:
cell, rat, mouse, disease, proteins, …

  Edges: ~ 39 million

  Textual relation labels: ~ 105,000

  Avg. occurrence: ~ 371.27

  Most frequently occurring textual relation labels:
 hmod → treat amod→ 
hmod → induce amod→

 ←prep include ←pobj
nsubj→ be ←prep in ←pobj
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From Word- to Relation-Spaces

● numerous co-occurrence based algorithms computing semantic 
vectors for words co-occurring in a set of documents, e.g.,

– latent semantic analysis (LSA)

– reflective random indexing (RRI)

– generalization of principle component analysis (gPCA)

– latent dirichlet allocation (LDA)

● directly applicable by denoting a pair of concepts as a document with 
its relations (textual and structured) as words 

LDA

f(       ) = 

f(       ) = 

f(       ) = 
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Overview
1. Extract Paths

2. Encode pairs as feature vectors

3. Train Classifer
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Modeling

● How to represent a pair of concepts as a feature vector?

● concept pair = multiset of paths in the knowledge graph

● each path pattern (i.e., sequence of relations) between the source and 
target concept becomes a feature

= f
s,t
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Some problems with this approach

● text mining error at every stage: 

– concept annotation, e.g. the “IMPACT gene”, Retinoic Acid Response 
Element abbreviated as “RARE”, the “Household gene”, etc.

– POS tagging + dependency parsing more error prone on scientific text

● dependency paths neglect context of the assertions being made

● attributes of nouns or verbs neglected, e.g., level occurs in 
dependency path, but not the quality of the mentioned level (high, 
low, …)

● no co-reference resolution → missing knowledge
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General Modeling

3x f(         )        f(         ) 

1x f(         )        f(         ) 

1x f(         )        f(         ) 

1x f(         )        f(         ) 

f
s,t
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Modeling

3x f(        )     f(         ) 

1x f(        )      f(         ) 

1x f(        )      f(         ) 

1x f(        )      f(         ) 

= f
s,t

Simple

LDA

= f
s,t
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LDA modeling relations between concepts

● pair of concepts  =  probability distribution of N real, but hidden 
relations (topics of LDA)

 



30

LDA modeling relations between concepts

● given: 1 pair of concepts = distribution of hidden but real relations

Sample 1 hidden relation relation x (x < N)

Sample 1 representation of re
lation x

E.g.:
hmod → treat amod→       (from Medline)
hmod → induce amod→    (from Medline)
may_prevent                      (from UMLS) 

Repeat, if not done
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