
REX – a tool for discovering evolution trends
in ontology regions

Victor Christen1, Anika Groß1,2, and Michael Hartung1,2

1 Department of Computer Science, Universität Leipzig, Germany
2 Interdisciplinary Center for Bioinformatics, Universität Leipzig, Germany

mam08bfa@studserv.uni-leipzig.de,
{gross,hartung}@informatik.uni-leipzig.de

Abstract. A large number of life science ontologies has been developed
to support different application scenarios such as gene annotation or
functional analysis. The continuous accumulation of new insights and
knowledge affects specific portions in ontologies and thus leads to their
adaptation. Therefore, it is valuable to study which ontology parts have
been extensively modified or remained unchanged. Users can monitor
the evolution of an ontology to improve its further development or ap-
ply the knowledge in their applications. Here we present REX (Region
Evolution Explorer) a web-based system for exploring the evolution of
ontology parts (regions). REX provides an interactive and user-friendly
interface to identify (un)stable regions in large life science ontologies and
is available at http://www.izbi.de/rex.
Keywords: ontologies, ontology evolution, graph vizualisation

1 Introduction and Background

In recent years ontologies have become increasingly important for annotating,
sharing and analyzing data in the life sciences [1,8]. The heavy usage of ontolo-
gies leads to a steady modification of their content [7,9]. In particular, ontolo-
gies are adapted to incorporate new knowledge, eliminate initial design errors or
achieve changed requirements. Tools like Protégé [16] support the development
and change of ontologies. This process is usually distributed since especially large
ontologies can not be maintained by single developers, such that collaborative
work is performed [3,16]. Typically, the overall development of an ontology is co-
ordinated by a project leader or consortium, and multiple developers contribute
knowledge in their field of expertise.

Due to the ontology’s size and complexity, the problem arises that coordi-
nators, developers and users want to know whether specific parts (regions) of a
large ontology have changed or not. For instance, if a user considers the anatomy
part of the NCI Thesaurus (NCIT) [13] for annotating local data such as radi-
ology pictures, she would like to know how this part has evolved recently, i.e., is
the part unstable or stable. Unstable regions have been in the focus of develop-
ment and underlay many modifications. By contrast, a stable region might be
already completed or was of low interest during recent ontology development.

http://www.izbi.de/rex

Project coordinators are interested in the evolution of different ontology parts
(1) to see how work has progressed and (2) to detect potential for future develop-
ment. Moreover ontology-based algorithms or applications might be affected by
ontology changes. For instance, if results of a gene set enrichment analysis [15]
are located in a strongly evolving ontology part, it should be re-done based on
the newest ontology version to see how results change [2]. By contrast, results
located within stable ontology parts are likely to remain unchanged.

Currently, life science ontologies can be accessed through platforms like Bio-
Portal [10] and OBO Foundry [14]. Although it is possible to retrieve different
versions of an ontology, such platforms rarely provide information about evo-
lution, i.e., users have the problem to figure out how an ontology has evolved
compared to their version in use. Recently, some web tools offer access to infor-
mation about the evolution of the Gene Ontology (GO). GOChase [12] allows to
study the history of individual GO concepts and Park et al. [11] propose graph-
based visualization methods to view modified GO terms. In own previous work
we designed the OnEX web application [6] for quantitative and concept-based
evolution analyses in life science ontologies. Our tool CODEX [5] can be used to
determine a diff between two ontology versions covering complex changes (e.g.,
concept merge or split). For a general overview on ontology and schema evolution
including diff computation we refer to [7]. In summary, currently available tools
lack the functionality to analyze and compare evolution in different ontology
parts especially for large ontologies with several version releases. In own pre-
vious work [4] we already proposed an algorithm to detect (un)stable ontology
regions for an arbitrary number of ontology versions. However, the algorithm is
only applicable offline, i.e., the research community can not make use of it.

We therefore present the novel web application REX (Region Evolution
Explorer) based on the region discovery algorithm [4]. REX can be used (1) to
determine differently changing regions for periodically updated ontologies, and
(2) to interactively explore the change intensity of those regions. REX provides a
comparative trend analysis such that users and developers can monitor the long-
term evolution for their regions of interest, e.g., to track the work or coordinate
future development. REX is online available at http://www.izbi.de/rex.

2 Region Discovery Method

The region discovery method proposed in [4] enables the detection of changing
and stable ontology regions. The basic idea is to compute change intensities for
regions based on changes between several succeeding versions of an ontology
within a specific time interval. The algorithm consists of four main steps: (1)
change computation, (2) cost propagation, (3) cost transfer, and (4) region dis-
covery. It first computes differences between two versions to determine changes.
It then propagates change costs within the is-a hierarchy of the ontology and
transfers these costs from the first to the last considered version. Based on com-
puted change intensities we can discover differently evolving ontology regions.
First, we briefly describe the method for two input versions Oold and Onew.

http://www.izbi.de/rex

Change operation Description Change costs

addC addition of a new concept 1

delC deletion of a concept 2

addR addition of a new relationship 0.5/0.5

delR deletion of a relationship 1.0/1.0

addA addition of a new attribute 0.5

delA deletion of an attribute 0.5

chgAttValue modification / change of an attribute value 0.5

Attributes

Relationships

Concepts

Table 1. Change operations and change cost model used in REX.

In general, ontology content can be added (addition), removed (deletion) or
modified (update). Here we distinguish between the basic change operations for
ontology concepts, their attributes and relationships between concepts listed in
Table 1. Our region discovery method assigns so-called local costs lc(c) to con-
cepts to cover the impact of changes that directly influence a concept c (see
change costs in Table 1). For instance, we can assign higher costs to deletions
since they might have a higher impact on dependent applications than additions.
Note, that the cost model can be adapted according to the application scenario.
Additions are registered in the new version while deletions are covered in the
old version. Moreover, the assignment depends on which ontology element has
changed. Here we assign costs from changes on a concept or its attributes to the
concept itself. Costs for relationships are split and assigned to the source and
target concept of the relationship, respectively. The local costs are then propa-
gated along is-a paths upwards in the ontology hierarchy to obtain aggregated
costs. Due to multi-inheritance we may need to split costs during propagation.
We therefore determine aggregated costs ac(c) for a concept c as follows:

ac(c) =
∑

c′∈children(c)
ac(c′)

|parents(c′)| + lc(c)

We thus ensure that the root concept(s) of the ontology contain the overall sum
of all assigned local costs. Fig. 1 (left) shows an exemplary anatomy ontology
with local and aggregated costs. For instance, the aggregated costs of ’organ’
(ac(′organ′) = 6) are computed based on the aggregated costs of its children
ac(′lung′) = 4 and ac(′tonsil′) = 2 as well as its own local costs lc(′organ′) = 0.

In order to determine (un)stable regions in the new version, we need to
transfer aggregated costs from Oold into Onew. We therefore sum up aggregated

is-a

region abs_size abs_costs avg_costs

organ 7 6 0.86

lung 3 4 1.33

tonsil 3 2 0.67

Region Measures
organ

lung

right

lung

left

lung

tonsil

lingual

tonsil

palatine

tonsil

lc(c)
ac(c)

2 2 2 2

0 4

0 0 1 1

1 2

0 6

Fig. 1. Example anatomy ontology with regions and local (lc(c)) and aggregated (ac(c))
concept costs (left). Region measures for example ontology (right).

costs which belong to the same concept in the old/new version. The new ontology
version with aggregated costs is used for further processing. The two version
method is generalized for multiple released versions O1, . . . , On by executing it
n− 1 times so that we successively determine aggregated costs (for each version
change Oi−1 7→ Oi) and transfer them to the newest version On. In On we can
apply different measures to detect ontology regions and their change intensities.
For further details about the underlying algorithms we refer to [4].

An ontology region OR consists of an ontology concept (region root rc) and
its is-a subgraph, i.e. it covers all leaf and inner concept changes within this
region. For our example in Fig. 1 we can consider the regions ’lung’ and ’tonsil’
each consisting of three concepts. Note that the complete ontology can also be
regarded as a region defined by the ontology root ’organ’. So far, REX provides
a set of measures to describe the change intensity of ontology regions. For each
OR one can determine its absolute size (abs size(OR)) w.r.t. the number of
concepts. Absolute change costs of an OR (abs costs(OR)) are represented by
the aggregated costs of its root ac(rc). The average change costs per concept
in OR can be computed as the fraction of absolute change costs and the region

size: avg costs(OR) = abs costs(OR)
abs size(OR) . Applying these measures to our example

results in the values displayed in Fig. 1 (right). The ’lung’ region changed more
intensively (avg costs(′lung′) ≈ 1.33) compared to ’tonsil’ (avg costs(′tonsil′)
≈ 0.67). The overall change intensity of the ontology is 6

7 ≈ 0.86.

Trend Discovery for Regions Using the region discovery method one can
determine the most (un)stable regions for a specific time interval. To better
monitor region changes over long periods of time and to figure out trends in
their evolution, we propose a further method for trend discovery based on sliding
windows. The overall procedure trendDiscovery looks as follows:

Algorithm 1: trendDiscovery

Input: time interval (tstart, tend), ontology O, ontology region of interest
OR ∈ O, change costs σ, window size ω, step width ∆

Output: time-based stability values measuredCosts
1 t ← tstart; measuredCosts ← ∅;
2 while t+ ω < tend do
3 versions ← getReleasedVersions(O, (t− ω, t));
4 latestV ersion ← discoverRegions(versions, σ);
5 regionCosts ← getStabilityValuesForRegion(OR, latestV ersion);
6 measuredCosts.put((t, regionCosts));
7 t ← t+∆;

8 return measuredCosts;

The algorithm works on an ontology O, a time interval (tstart, tend) and an
ontology region of interest OR to be monitored. We further use a sliding window
of size ω, a step width ∆ and change costs σ. In particular, we successively shift
the window beginning at tstart − ω over the time interval until we reach its end
tend. In each step we first determine the released ontology versions within the

Client

Communication Interface

Server
Region

Algorithm
Graph Data

Service
Trend Analysis

Service
Quantitative

Service

Function Calls

OnEX

response request

SQL

Knowledge

base layer

Server

layer

Presentation

layer

Fig. 2. Three-layered architecture of REX.

window (line 3). We then calculate and save the costs (e.g., avg costs) for OR by
calling the region discovery algorithm (discoverRegions) for the versions within
ω. We thus generate a time-based map (line 6) containing information about the
change intensity of OR at specific points in time in the defined window. The
results are visualized for end users in the Trend Analysis component of REX.

3 Infrastructure and Application

REX is based on a three-layered architecture displayed in Fig. 2. The back-end
consists of the OnEX repository [6] which currently provides access to up to
1,000 versions of 16 popular life science ontologies. Note that it supports the
import of ontologies in different formats such as OWL and OBO. Users can an-
alyze integrated versions with the offered facilities of REX. The server layer is
implemented in Java and realizes different services to access ontology versions
in OnEX. Moreover, it provides services to calculate the region measures and
to perform trend and quantitative analyses. Every service is encapsulated in its
own module, such that it is possible to change the region discovery algorithm
independently of the other modules. Results are transformed such that the ap-
plication can visualize ontologies and changing regions in graphs. Based on the
existing services we can create further interfaces like web services for program-
matic access. The front-end is a platform-independent web application based on
the Google Web Toolkit (GWT)3 and the graph library InfoVis4. In the following
we discuss the analysis facilities of REX, namely the Structural Analysis, Trend
Analysis and Quantitative Change Analysis in more detail.

Structural Analysis The structural analysis component represents the evolu-
tion of regions in an ontology for a specified time interval as a graph (Fig. 3).
The component is divided into a Browser View as well as a table to search and
filter results (Table View). First the user needs to specify the ontology name

3 Google Web Toolkit: http://developers.google.com/web-toolkit/
4 InfoVis Toolkit: http://philogb.github.io/jit/

http://developers.google.com/web-toolkit/
http://philogb.github.io/jit/

Input

Table View

Browser View Change History

Fig. 3. Structural Analysis component.

and the time period to review in the Input form. The system then performs
the region discovery algorithms and generates a graph to visualize the results
(Browser View). Each node in the graph represents an ontology concept, is-a
relationships are displayed as edges between the nodes. The layout is circular
and displays a concept and its near neighborhood, i.e. its descendants and par-
ent nodes (either with or without labels). Users can easily identify interesting
sub regions by selecting a concept in the graph (Browser View) or in the Table
View. This concept is then shown as the central node in the Browser View. It
is possible to navigate in both directions through the ontology. For instance, if
one is interested in a specific sub region and its content, one clicks on the node
and the graph will display the sub region in more detail. In contrast, one can
also navigate to a more general concept (surrounded by blue circles) to see sib-
ling regions of the current one. The colors signal the measured change intensity
(avg costs) of a region. Red stays for high change intensity whereby green is
used to mark stable regions. Thus, users can easily figure out where (un)stable
regions are located. We provide two coloring schemes: (1) interval-based group-
ing or (2) equal distribution between min/max avg costs. When clicking on a
specific concept in the graph one can get further information like the accession
number, concept name/label or the measured avg costs in a pop up window.

In general the number of concepts and relationships in an ontology is very
high. Thus, it is difficult to recognize interesting regions only by browsing through
the graph especially for large ontologies. Moreover, users may be interested in
the change intensity of specific regions. The Table View therefore allows users to
filter and sort ontology regions by their accession number, name and avg costs.
In particular, search criteria can be specified in the head of the table to find re-
gions of interest. For instance, one can filter out all regions in the Adult Mouse
Anatomy Ontology containing the name ’heart’. Users can simply select their
region of interest in the table and move to the Browser View for its visualiza-
tion. To get a more detailed view of occurred changes, users can request the local
Change History of a selected concept at the bottom of the table.

Quantitative Change Analysis To get information about how many changes
occurred in an ontology for a specific time interval REX offers the quantitative
change analysis component (Fig. 4 left). Users can generate diagrams to see

Quantitative Change Analysis Trend Analysis

added concepts

deleted concepts

Fig. 4. Trend and Quantitative Change Analysis components.

the differences between released ontology versions in statistical (quantitative)
form, i.e., we count and visualize how many changes (addC, delC, addR, delR)
occurred. In particular, users can display the number of changes in one ontology
for a specific time interval, e.g., GO Biological Processes in 2011. Moreover, one
can compare the evolution of two different ontologies for a specified time interval
or compare two different time intervals for the same ontology. Users can thus
identify interesting ontologies and time periods for later region analyses.

Trend Analysis The trend analysis component can be used to study and com-
pare the long-term evolution of selected regions (Fig. 4 right). Users first need
to specify the ontology, the time interval (first and last version) and the window
size and step width (number of versions). Next they are able to select regions
of their interest either by searching the respective accession number / concept
name or by choosing from top-level concepts of the ontology. REX executes the
proposed trendDiscovery algorithm to measure the avg costs for the selected
regions at different points in time. The results are converted into a line chart
which displays the trend of the measured avg costs for each region over time.
Users are thus able to compare the change intensity for different regions of in-
terest within one diagram. Of course, the interpretation of trend results is up to
the user and depends on the application scenario. Some regions may be of high
research interest and are thus continuously adapted (constantly high avg costs).
Other regions have been adapted heavily in the past and become stable after a
while. By contrast, some long-term stable regions might have just been of low
interest in the past and need future development.

4 Conclusion and Future Work

REX provides interactive access to information about the evolution of life science
ontologies. Users can explore (un)stable ontology regions by different workflows.
The knowledge about changing ontology regions can be used to support ontology-
based algorithms and analysis. Furthermore, the development of large life science

ontologies can be monitored with REX, i.e., developers and project coordinators
can inform themselves about ongoing work in different ontology parts. For future,
work we plan to extend REX such that users are able to perform region analysis
on their individual ontologies and can apply different cost models. We further
like to build a web service interface such that algorithms can directly access the
region analysis algorithms.

Acknowledgment
This work is funded by the European Social Fund and the Free State of Saxony
(E-Science Network Sachsen).

References

1. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions.
Briefings in Bioinformatics 7(3) (2006)

2. Groß, A., Hartung, M., Prüfer, K., et al.: Impact of ontology evolution on functional
analyses. Bioinformatics 28(20) (2012)

3. Groza, T., Tudorache, T., Dumontier, M.: Commentary: State of the art and open
challenges in community-driven knowledge curation. Journal of Biomedical Infor-
matics 46(1) (2013)

4. Hartung, M., Gross, A., Kirsten, T., Rahm, E.: Discovering Evolving Regions in
Life Science Ontologies. In: Data Integration in the Life Sciences (2010)

5. Hartung, M., Gross, A., Rahm, E.: CODEX: exploration of semantic changes be-
tween ontology versions. Bioinformatics 28(6) (2012)

6. Hartung, M., Kirsten, T., Gross, A., Rahm, E.: OnEX: Exploring changes in life
science ontologies. BMC bioinformatics 10(1) (2009)

7. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent Advances in Schema and Ontol-
ogy Evolution. In: Schema Matching and Mapping. Springer (2011)

8. Lambrix, P., Tan, H., Jakoniene, V., Strömbäck, L.: Biological ontologies. In: Se-
mantic Web. Springer (2007)

9. Malone, J., Stevens, R.: Measuring the level of activity in community built bio-
ontologies. Journal of Biomedical Informatics 46(1) (2013)

10. Noy, N.F., Shah, N.H., Whetzel, P., et al.: BioPortal: ontologies and integrated
data resources at the click of a mouse. Nucleic Acids Research 37(suppl 2) (2009)

11. Park, J.C., Kim, T., Park, J.: Monitoring the evolutionary aspect of the gene
ontology to enhance predictability and usability. BMC Bioinformatics 9 (2008)

12. Park, Y.R., Park, C.H., Kim, J.H.: GOChase: correcting errors from Gene
Ontology-based annotations for gene products. Bioinformatics 21(6) (2005)

13. Sioutos, N., Coronado, S.d., Haber, M.W., et al.: NCI Thesaurus: a semantic model
integrating cancer-related clinical and molecular information. Journal of Biomedi-
cal Informatics 40(1) (2007)

14. Smith, B., Ashburner, M., Rosse, C., et al.: The OBO Foundry: coordinated evo-
lution of ontologies to support biomedical data integration. Nature Biotechnology
25(11) (2007)

15. Subramanian, A., Tamayo, P., Mootha, V.K., et al.: Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles. PNAS
102(43) (2005)

16. Tudorache, T., Noy, N.F., Tu, S., Musen, M.A.: Supporting collaborative ontology
development in Protégé. In: The Semantic Web-ISWC 2008. Springer (2008)

	REX – a tool for discovering evolution trendsin ontology regions

